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Herein we present a whole new approach which leads to the end results of the General Theory of 

Relativity, via just the law of conservation of energy (broadened to embody the mass & energy equivalence of 

the special theory of relativity), and quantum mechanics. Thus, we start with the following postulate. 

Postulate: The rest mass of an object bound to a celestial body amounts less than its rest mass 

measured in empty space, and this, as much as its binding energy vis-à-vis the gravitational 

field of concern.  

The decreased rest mass, is further dilated by the Lorentz factor, if the object in hand, is in motion in the 

gravitational field of concern. The overall relativistic energy must be constant on a stationary trajectory. This 

yields the equation of motion driven by the celestial body of concern, via the relationship 
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0rcGM ; here M is the mass of the celestial body 

creating the gravitational field of concern; G is the universal gravitational constant, measured in empty space; it 

comes into play in Newton’s law of gravitation, which is assumed to be valid for static masses only; r  points to 

the location picked on the trajectory of the motion, the center of M being the origin of coordinates, as assessed 

by the distant observer; 
0v  is the tangential velocity of the object at r ; 

0c  is the ceiling of the speed of light in 

empty space; 
0v  and 

0c  remain the same for both the local observer and the distant observer, just the same way 

as that framed by the special theory of relativity. 

The differentiation of the above relationship leads to      
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r is the outward looking unit vector along r; the latter differential equation is the classical Newton’s Equation of 

Motion, were 0v , negligible as compared to 0c ; this equation is valid for any object, including a light photon.  

Taking into account the quantum mechanical stretching of lengths due to the rest mass decrease in the 

gravitational field, the above equation can be transformed into an equation written in terms of the proper lengths, 

yielding well the end results of the General Theory of Relativity, though through a completely different set up. 
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1. INTRODUCTION 

 

This article, is essentially an extension of the controversial article which appeared in 

Annales de La Fondation Louis de Broglie, owing to a great referee’s report [1]. Thus, we 

have achieved a whole new approach to the derivation of Newton’s Equation of Motion, as 

well as the findings brought up within the frame of the general theory of relativity (GTR), 

such as the “precession of the perihelion of the planets”, and the “deflection of light nearby a 

star”.  

To the contrary of what had been generally achieved so far, the basis adopted herein, 

merely consists in supposing that the gravitational field, via the binding process, alters the rest 

mass of an object conveyed in it. Indeed, the mass & energy equivalence drawn by the special 

theory of relativity (STR), astonishingly, far and wide overlooked, imposes such a change. 

Next to this fundamental theory, we use the classical Newton’s gravitational attraction force 

reigning between two static masses. We have however, previously shown that, the 1/r
2 

dependency of the gravitational force is also imposed by the STR [2].  
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Furthermore, the metric coming into play in this work is (just like the one used by the 

GTR), altered by the gravitational field (in fact, by any field the “measurement unit” in hand 

interacts with); yet in the present approach, this occurs via quantum mechanics. In effect, the 

solution of even a non-relativistic quantum mechanical description, given that “potential 

energies existing in nature” are considered, leads to solutions, in perfect harmony with the 

STR. This is to say that, regarding the “internal dynamics” of a quantum mechanical object, 

“mass” (the mass, in fact, generally a compound mass, carrying this internal dynamics), 

“space” (i.e. the size of the object), and “time” (period of time displayed by the internal 

dynamics of concern), or “energy” (total energy marked out by this internal dynamics), are 

structured in such a way that, the quantum mechanical products, say [mass x size], and [size x 

period of time], are nailed to constants, made of the Planck Constant and electric charges, for 

atomic and molecular objects, for instance, which also remain Lorentz invariant (i.e. 

invariable, were the object brought into a uniform translational motion). 

Thus, as we shall see, based on the STR, the rest mass of an object when embedded in 

a gravitational field should decrease as much as its binding energy in the field [3]; a mass 

deficiency conversely, via quantum mechanics, yields a stretching of its size, as well as the 

weakening of its internal energy (this is how the metric coming into play is altered by the 

field).  

Einstein treats the effect of gravitation, via the assertion of the principle of 

equivalence [4]. Remarkably enough, we do not need this assertion. Thus, we come to show 

that, what the principle of equivalence does, can somewhat be accounted by the law of 

conservation of energy (broadened to embody the mass & energy equivalence of the STR). To 

show how this happens and demonstrate it, in a one to one correspondence, mathematically, 

constitutes the topic of a subsequent article.  

Yilmaz, was one, who was disturbed by the manner the GTR, handled the rest masses, 

instead of envisaging the conservation of the total energy. In effect, once he derived the exact 

solution of the accelerated elevator, to his great surprise, he found out that Einstein’s fields 

equations were not satisfied. This was the beginning of his efforts towards a more consistent 

theory, though still based on the principle of equivalence [5,6,7].
 
Nonetheless, Yilmaz’s 

approach removed the singularities delineated by the GTR. Logunov, separately derived the 

relativistic theory of gravity, still removing, the singularities yeld by the GTR [8].  

In any case, Einstein’s GTR leads to the fact that, his original relativistic “mass & 

energy equivalence”, obtained within the frame of the STR, i.e. 

E (rest energy released, or piled up)                           

                 = m (magnitude of the algebraic increase in the rest mass) x 2

0c     

where 0c  is the ceiling of the speed, light in empty space can delineate, does not hold between 

values of energy and mass at different gravitational coordinates [9]. We do not have such an 

annoyance, since we derived our results essentially based on the above relationship.  

It becomes amazing that Einstein’s relativistic “mass & energy equivalence” with 

regards to a rest mass embedded in a gravitational field, does wholly play the role of his extra 

assertion, i.e. the principle of equivalence, with regards to the effect of gravitation on a rest 

mass. In fact the relativistic mass & energy equivalence does even more, since the way we 

make usage of it, it can be applied to any field, the object in hand can interact with.  

Thence one can propose the following postulate, actually nothing else, but the energy 

conservation law, where though, now energy and mass are essentially no different from each 

other.  

Postulate:   The rest mass of an object bound to a celestial body, amounts less than its 

rest mass measured in empty space, and this as much as its binding 

energy vis-à-vis the gravitational field of concern.  
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It is important to note that, on the contrary to what, the principle of equivalence 

suggests, in conjunction with the mass dilation, an accelerated object is to exhibit, here it is 

question of a decrease of rest mass in a gravitational field, and this is, interestingly, just as 

much as the rest mass increase, predicted by the GTR. Thus based on our approach, the 

classical red shift due to gravitation is nothing else, but a rest mass decrease, thereby a 

corresponding overall rest relativistic energy decrease of the emitter embedded in the 

gravitational field, whereas this is due to the clock retardation, within the frame of the GTR. 

(In our approach however, as we will soon see, the “clock retardation” is a phenomenon 

resulting from the “rest mass decrease”, caused by the gravitational binding, given rise to a 

quantum mechanical total energy decrease of the object in hand.) 

 Below, we first summarize our previous work [1] (Section 2). Next, we consider the 

quantum mechanical stretching of units lengths, due to the rest mass decrease, the object in 

hand displays in a gravitational field (Section 3). We thus land at a whole new general 

equation of motion yielding well the end results of the GTR (Sections 4 and 5). A conclusion 

follows (Section 6). It is worth to mention that the present work treats a light photon just like 

any other object. 

 

2. PREVIOUS SET UP 

 

The above postulate says that, the law of energy conservation must hold, through the 

gravitational binding process. It holds, in fact, through any binding process, driven by any 

possible force, the object in hand, may react to. Thus a particle at rest, when embedded in a  

given field (it interacts with), must discharge an amount of energy equal to the binding energy 

coming into play. Likewise, as the bound particle is carried out of the field in consideration, it 

will pile up, the amount of energy equal to its binding energy. Here, for simplicity, though 

without any loss of generality, we assumed that the bound particle is insignificant as 

compared to the host object binding it. We will handle this point below. 

A mass deficiency conversely, via quantum mechanics (whose basis, i.e. the wave 

equation, together with, substantially, the de Broglie relationship, is already fully consistent 

with the STR), yields the uniform stretching of the size of the object at hand (in contrast with 

the contraction of the length of it coinciding with the direction of the gravitational attraction), 

as well as the weakening of its internal energy, via the following quantum mechanical 

theorem proven elsewhere [10,11,12,13].  

Theorem 1:    Consider a relativistic or non-relativistic quantum mechanical 

description of a given object, depending on whichever, may be 

appropriate. This description points to an internal dynamics which 

consists in a “clock motion”, achieved in a “clock space”, along with a 

“unit period of time”.  The description excludes “synthetic potential 

energies” (which may otherwise lead to incompatibilities with the 

STR). It is supposed to be based on K particles, altogether. If then 

different masses mk0, k = 1, …, K, involved by this description of the 

object at rest, are all multiplied by the arbitrary number  , the 

following two general results are conjointly obtained:  

a) The total energy E0 associated with the given clock’s motion of the 

object is increased as much, or the same, the unit period of time T0, 

of the motion associated with this energy, is decreased as much.  

b) The characteristic length, or the size 0R  to be associated with the 

given clock’s motion of concern, contracts as much.  
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                        In mathematical words this is:  

     [(mk0, k = 1, …, K)   ( mk0, k = 1, …, K)]  ( E E0 0 ) or ( 0T


 0T
), and ( 0R


 0R

)].                                                

This, together with the above postulate, yields at once the next theorem. 

Theorem 2:   A clock interacting with any field, electric, nuclear, gravitational, or else 

(without loosing its “identity”), retards via quantum mechanics, due to 

the mass deficiency it develops in there, and this, as much as the 

binding energy it displays in the field in consideration; at the same time 

and for the same reason, the space size in which it is installed, stretches 

as much. 

This can further be grasped rather easily, as follows. The mass deficiency, the 

quantum mechanical object displays in the gravitational field (or in fact, any field with which 

it interacts), weakens its internal dynamics as much, which makes it slow down. Thence, one 

arrives at the principal results, stated above.  

In order to calculate the binding energy of concern, we make use of the classical 

Newton’s gravitational attraction force, yet with the restriction that, it can only be considered 

for static masses. Luckily we are able to derive the 1/r
2 

dependency of the “Newton’s  

gravitational attraction force” reigning between “two static masses”, here again, based on 

just the STR [2]. This can be achieved easily by noting that the quantity [force] x [mass] x 

[distance]
3
 is Lorentz invariant. On the other hand, it is empirically known that the electric 

charges are Lorentz invariant. Now suppose we have a “dipole” of a given mass at rest, 

bearing a given length r at rest. Coulomb Force reigns between the electric charges. Suppose 

we assume that Coulomb Force is, as usual, expressed as proportional to the electric charges 

coming into consideration, also to 1/r
n
, where though we do not know, a priori the exponent n. 

Suppose then we bring the dipole to a uniform translational motion, along the direction 

delineated by the line connecting the electric charges making it. Since for the case in 

consideration, [mass] x [length] remains invariant, it becomes evident that the Lorentz 

invariance of [force] x [mass] x [distance]
3 

shall hold, only if Coulomb Force, spatially 

behaves as   n2
r/charge , but n being exclusively 2 (since charges are Lorentz invariant).  

Note that the same holds, if charges in question, are “gravitational charges”; in this 

case however, the product of charges
 
should be considered together with the universal 

gravitational constant. The foregoing reasoning, in this latter case, makes that the 1/r
2 

dependency of the Newton’s gravitational attraction force reigning, though between static 

masses only, is a requirement imposed by the STR. 

Thus, in effect, our framework is fundamentally based on the STR. 

The related metric (just like the one used by the GTR) is altered by the gravitational 

field (in fact, by any field the object in hand interacts with); though in the present approach, 

this occurs, as Theorem 1 underlines, via quantum mechanics. Henceforth, one does not 

require the principle of equivalence assumed by the General Theory of Relativity, as a 

precept, in order to predict the end results of this theory.  

Let then 0m  be the rest mass of the object in consideration, at infinity. When it is 

bound still at rest, to a celestial body of mass M , assumed for simplicity infinitely large as 

compared to 0m , this latter will be diminished as much as the binding energy coming into 

play, to become m(r) (r being the distance of 0m  to the center of M ), so that [1]  

   (r)

0 emm(r) 

  ,                                         (1) 

where )r(  is  



 5 

   
2
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G
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M
  ;                                                       (2) 

G is the universal gravitational constant; r is the distance of m(r) to the center of M , as 

assessed by the distant observer.  

Note that m(r) becomes the “gravitational mass”, if the object remains at rest. 

Otherwise, classically speaking, it is neither the “gravitational mass”, nor the “inertial 

mass”; it is the “rest mass of the gravitationally bound object” . This will be clarified at the 

level of Theorem 3, stated below. On the other hand, the reason for which, energy should be 

retrieved from the mass of the tiny bound object, and not from the infinitely more massive 

celestial body hosting it, is a requirement imposed by the law of conservation of linear 

momentum, which in return remains a result drawn by the law of conservation of energy and 

the Newton’s law of gravitational attraction force, we lie on. (Unfortunately, due to lack of 

space, we are to omit the mathematical details of the process in question.)  

We would like to recall that, G is not Lorentz invariant, though classified as a 

universal constant. [One can immediately see this, as follows. Dimensionally speaking 

)(rGMm  is, in CGS unit system, equivalent to (electric charge)
2
. But the electric charges are 

Lorentz invariant Thus, so must be the quantity )(rGMm . Mass is not a Lorentz invariant 

quantity. Hence neither G can be, though the product )(rGMm , is.] This shows that, G is not 

as universal as, one may think it is. Just like the mass, it is to depend on the gravitational field 

strength. This fact was coined in our previous article (Ref. 1), but left to be worked out.    

Via differentiating Eq.(1), along with Eq.(2), it can be checked that we are indeed 

dealing with nothing else, but an energy conservation  equation, i.e.   

   dr
r

m(r)
Gcdm(r)

2

2

0

M
   .                                            (3) 

In other words, the RHS of this equation is the energy, one would have to furnish to 

m(r) at r, in order to carry it away from M , as much as dr. And the LHS is the energy 

equivalent of the mass increase dm(r), the mass m(r) delineates throughout, as imposed by the 

STR. “Energy conservation” imposes that these two quantities are equal to each other 

(c.q.f.d.). We would like to recall that originally, we had arrived at Eq.(1), through a different 

set up than that underlined by Eq.(3).  

Now suppose that the object of concern, say a planet, is in a given motion around the 

celestial body of mass M , say the sun; the motion in question, can be conceived as made of 

two steps:  

i) Bring the object quasistatically, from infinity to a given location r, on its orbit, but 

keep it there at rest.  

ii) Deliver to the object at the given location, its motion on the given orbit. 

 

The first step yields a decrease in the mass of 0m  as delineated by Eq.(1). The 

second step yields the Lorentz dilation of the rest mass m(r) at r, so that the overall mass 

)r(m , or the same, the total relativistic energy of the object in orbit becomes 
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  ;                                 (4) 

0v  is the “local tangential velocity” of the object at r. 
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The total energy of the object in orbit [i.e. 2

0c)r(m ] must remain constant [4, 14],
 
so 

that for the motion of the object on a given orbit, one finally has
*
 

  ;Constant
/
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(present basis of the equation of gravitational motion) 

0v  (the relative velocity of 0m  in regards to M ), and 0c , in our approach, if written in terms 

of lengths and periods of time picked up along the trajectories in consideration, remain the 

same for both the local observer and the distant observer (given that both, lengths and periods 

of time, are affected in the same respect), similarly to what is framed by the STR; D is a 

constant to be determined.  

 

3. WORKING OUT THE QUANTUM MECHANICAL STRETCHING OF 

LENGTHS 

 

The differentiation of the above equation leads to      

.dvvdr
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M
                               (6) 

This relationship is interesting in many ways. First of all when 
0v  (as compared to the 

velocity of light) is negligible, or similarly when   is small, it reduces right away to the 

classical Newton’s equation of gravitational motion (which can be quickly checked for a free 

fall, for instance). This, interestingly means that we have come to modify the gravitational law 

of force. Eq.(6), as we will elaborate on below, can further account for the precession of the 

perihelion of the planets, as well as the deflection of light nearby a celestial body, were it 

processed with the content of Theorem 1 (though, it is obtained through a totally different 

perspective than that of Einstein). For the purpose in question, based on Eq.(1), we should 

make use of the following relationships, right away induced by Theorem 1, regarding how the 

proper period of time T
†
 and, the proper size R , are quantum mechanically altered, in the 

gravitational field of concern, to become respectively T(r)  and R(r), as assessed by the distant 

observer:   

                                        

 eT)r(T  ,                             (7) 

    (unit period of time at r, as assessed  

      by the distant observer) 

                                                 
*
 Amazingly the GTR predicts (as furnished by Ref. 14) 

           Lifshitz),and Landauby presented hip(relationsConstant
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   which coincides, up to the second order of the corresponding Taylor expansion, with Eq.(5); recall though, 

Eq.(5) (of the text), is fully consistent with what Yilmaz would have written, in the same way as that presented 

by Landau and Lifshitz, leading to Eq.(i), along with the correction (Refs. 5, and 6) he proposed to Einstein’s 

metric, i.e.   

          ;approach) sYimaz' via written  hip(relations Constant
/
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e
cmcrm                          (ii)  

†
  Note that the GTR predicts   21TrT /)( .  This outcome, to the first approximation, is the same as that of 

Eq. (7) of the text. Recall that because )r(T  is longer than 
T  ,  the time registered by the distant observer in 

relation to the location r, runs slower than his own time, in empty space.  
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 er RR )(  .                                        (8) 

     (unit length at r as assessed  

       by the distant observer) 

  

Based on Eq.(8), it can be quickly shown that the perimeter 0P  of a circumference located at a 

distance 0r  of the local observer, from the center of the celestial body of mass M , due to 

gravitation, stretches to become 

 
0ePePP 00

  ,           (9) 

as measured by the distant observer. The measurement of 0r , can be for instance achieved, via 

counting the local period of time, a light beam takes to make a round trip to M . 

Thus, 0r  shall be defined from  

0ererr 00

  ;       (10) 

this makes that 
00 edredrdr 000


     (for 10  ) .            (11) 

Recall that, 0r  is measured in terms of the local unit length [cf. Eq.(8)]. When Eqs. 

(10) and (11) are plugged into Eq.(6), one obtains 
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                                       (approximate equation of  motion written  

 by the author, in terms of the proper metric)    

 

The singularity for 10  , arising in the LHS of Eq.(12), is due to the adoption of the 

approximation 0err 0


 , instead of the rigorous relationship,  err 0  [cf. Eq.(10)]. 

The correct equation of motion must have been 
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(written rigorously by the author, in terms of the proper metric)  

 

instead of Eq.(12).
‡
  

 

                                                 
‡
  The relationship  err 0

 indeed yields 
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edr
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   or 
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 ,                (ii) 

to be plugged in the LHS of Eq.(6). On the other hand,   can be extracted from  

 e0
  ,                         (iii) 

or the same, from 
0e    , in terms of 

0 . 



 8 

Note that Eq.(13), via Eq.(10), becomes
§
 

,
/

exp
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)eα 0

D
(







        (14)  

0D  still being a constant, but now as assessed by the local observer. Eq.(14), evidently, is the 

integral form of Eq.(13). 

 
4.  GENERAL EQUATION OF GRAVITATIONAL MOTION IN VECTOR FORM 

 

In order to draw a one to one comparison between the classical Newtonian frame [15], and 

ours, we would like to rewrite Eq.(12), by differentiating Eq.(14), and reexamine it: 
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   [Eq.(12), rewritten by differentiating Eq.(14)] 

 

The LHS of this equation expresses the infinitesimal change in the static gravitational 

binding energy of the object, making that the overall mass to be accounted by the static 

gravitational force exerted on the object becomes 2

0

2

00 c/v1/)eexp(m 0 



). The RHS 

conversely expresses the infinitesimal change in the kinetic energy of this “overall mass”. 

Note that the change on the kinetic energy, is solely due to the change on the velocity. Recall 

further that the infinitesimal changes in question are in opposite directions.  

Eq.(15) is an equality between energies, and not obviously between forces, though as 

we will elaborate below, it can well be transformed into an equality between forces. 

                                                 
§
  Newton wrote for the static gravitational force F, between M  and m,  

2r

m
GF

M
 .             (i) 

(gravitational force as assessed by the distant observer) 

 

We claim that, this expression  is only valid as assessed by the distant observer, whose metric being the only 

metric unaffected by the presence of M . Locally, say as referred to m, the distance 
0
r  of m to M , as 

assessed by an observer situated at the location of m, is different from r; more specifically, it is shorter than 

r, as much as 0e
  [cf. Eq.(10)]. Thus F is transformed into 

0
F , i.e.   

2

0

2

0
r

me
GF

0


M      (for 10  ) .              (ii) 

(gravitational force as assessed by the local observer) 

 

Recall that mGM  remains invariant, regardless the coordinate system, just like electric charges embarked 

in a translational motion, are. (This assertion is in full conformity with the Galilean principle of relativity, 

which is in return the essential pillar of the STR.) The outcome is that, it is as if G is decreased by 02
e

 , 

making that Fdr is decreased  by )1(e 0
0 

  [cf. Eqs.(11) and (12)]. In effect, the scheme we have just 

drawn, is not any different from that displayed by the change of the law of Coulomb Force, exerted by 

moving electric charges, upon each other. To be more specific, let   be the usual Lorentz dilation factor. 

Then the force intensity as observed by the outside fixed observer, is 2  times smaller than that of the proper 

force, due to the length contraction (the charges being untouched). In a gravitational field, lengths stretch, 

instead. Thus in this latter case, we expect just the opposite to occur. This result fully supports the internal 

coherence of the present approach.   
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Thence by rereading Eq.(15), we can state that (see Ref.1)                         

ion)(Accelerat(Force)nalGravitatio(Classical xMassOverallcv11e 2

0

2

00
0 )/)( 


.   (16) 

   If the force is assessed by the distant observer, on the other hand, Eq.(16) becomes 

)()(/)( onAcceleratiForcenalGravitatioClassical xMassOverallcv1 2

0

2

0  .  (17) 

 

Eq.(12), indeed, following the routine pattern (used to transform the Newton equation, 

connecting the change in the binding energy with the change in the kinetic energy), can be 

transformed into a time dependent equation of motion [1,16,17], to write 

2
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0 dt

trd

r

r

c
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1e1

r

G
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)(
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M
;     (18) 

(the general equation of gravitational motion written  

     by the author, in the local frame of reference)   

 

here 0r  is the vector bearing the magnitude 0r , and directed outward; recall that dr0/dt0 is the 

velocity vector v0 at time 0t , the local time. 

Taking into account the fact that, the universal gravitational constant decreases as 

much as 2e , in the proper frame of reference [cf. the footnote we framed right above 

Eq.(14)], to become 0G , i.e.  

   )2exp(GG0   ,                  (19) 

 for a not too strong field, Eq.(18) can be written as  
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M
 .                (20) 

Eq.(16), based on the analysis of Eq.(14), seems the natural way of presenting our 

result. But then, Newton’s equation of gravitational motion, i.e. [Newton’s Gravitational 

Attraction Force = Mass of the Planet x Acceleration] is broken, since an extra term, i.e. 
2

0

2

00 c/v1e)1( 0 


comes to multiply the Newton’s gravitational attraction force, in its 

classical form. The classical cast, nonetheless can formally be saved, if instead, we choose to 

alter the “classical Newton’s gravitational attraction force”; but then the gravitational mass 

and the inertial mass, as classically defined, shall not be same. Thus, we establish our next 

theorem. 

Theorem 3:  The gravitational mass G0m , and the inertial mass I0m , as classically 

defined,  are not the same; the theory presented herein, to formally save 

Newton’s equation of gravitational motion, in reference to the local 

observer, predicts  

                       2

0

2

00G0 cv1emm 0 /)exp( 



,   

                         given that  

                       
2

0

2

0

0

I0

cv1

em
m

0

/

)exp(








 .  

   Though very little, generally, G0m  and I0m  differ.  

The above theorem yields the interesting relationship along with the usual definition 

of the Lorentz dilation factor: 

    2

I0G0 mm  /  .      (21) 
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Eq.(18), on the other hand, seems to be remarkable for velocities not negligible as 

compared to the velocity of light, since it indicates that in such a case, the effective attraction 

turns to be much divergent than the classically estimated one.
**

 In other words, on can deposit 

a satellite on a given stationary orbit, with a velocity lower than that predicted by the classical 

Newtonian set up. Or the same, the usual Newton’s gravitational attraction force induces a 

stationary motion, which for a given velocity, takes place much closer to the gravitation 

source (in comparison with what would have classically occurred according to the Newtonian 

description). This is in fact, according to our approach, how the perihelion of a planet, 

precesses.  

By the same token, a given orbit velocity now corresponds to a much larger source 

mass, at a given distance from this. This may constitute a clue to the dark matter quest.
††

 At 

the far edge of the universe, where the escape velocity of the objects is very high, the 

restoring gravitational force exerted by the rest of the universe on these objects, turns out to 

be much weaker than the classically estimated one. In other terms, the higher the escape 

velocity, the greater appears the acceleration to be classically coupled with the same mass of 

the universe residing under; this is as if the universe is pulled toward outside.  This may 

constitute a clue to the dark energy quest.  

 

                                                 
**

 Consider a stationary circular orbit; then based on Eq.(18), one can, to the first approximation, write  

  
2
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  ;              (i)       

        , following Eq.(10) is defined as 
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0
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 )(   .                         (ii)                 

        Eq.(i) leads to  

    





1c

v
2

0

2

0  ,                          (iii) 

         (within the frame of the present approach)         

        whereas within the frame of the Newtonian approach one has 

    
2

0

2

0

c

v  .                          (iv) 

                      (within the frame of the Newtonian approach)       

       Thus, for a given  , the ratio 2

0

2

0 c/v  predicted by the present approach, is smaller than that predicted by the 

Newtonian approach. Or the same, along Eq.(i), a given velocity yields an   greater than predicted by the 

Newtonian approach; this means a smaller orbit radius, or equivalently, a more massive gravitation source. 

Hence the closer 
0v  to the speed of light, with respect to the circular motion in consideration, the nearer is 

  to infinity (instead of unity, within the frame of the Newtonian approach.) Or the same, =1 leads to 

0v =
0c , in Newtonian mechanics, whereas =1 yields 

0v = 2c0 /  , following our approach.  

††
   Attention should be paid to avoid the following possible confusion. The masses of bound celestial bodies, 

though very little, decrease, and what they mutually sense, comes from the effectively decreased masses in 

question. Thus, it may seem confusing to mention the concept of “dark matter” at this point, while one seeks 

more matter than “observed” and not matter lost due to binding. Nonetheless Eq.(18) ultimately tells us that, 

less mass than usual yields higher stationary orbit velocity. It is that the law of force has changed, and what 

is reigning, is not anymore the usual Newtonian law of force, though it is based on this latter. 
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5. PRINCIPAL END RESULTS OF THE GTR 

 

The essence of this work was based on the energy conservation law, including the 

equivalence of mass and energy, as implied by the STR. This led to the general equation of 

gravitational motion, i.e. Eq.(18). This latter, becomes the Newton’s equation of motion, only 

if 0v  is small as compared to the velocity of light, and the gravitational field is weak. This 

equation strikingly, can cover up the basic predictions envisaged by the GTR, though its set 

up is totally different than that of this theory. Note that a comparable equation was assumed 

based on a Weber’s law of electric force [18,19], though brutally transposed to celestial 

mechanics [20,21]. Thus, instead of the coefficient )c/v1(e)1( 2

0

2

00
0 


, coming into play 

in the LHS of Eq.(18), briefly speaking, the coefficient )c/v31( 2

0

2

0  was visualized, where 

though, the multiplier 3, next to 2

0

2

0 c/v , appears to be deprived of any explanation. This latter 

approach anyway happens to take care of the precession of the perihelion of Mercury, with 

the inconvenience of not being able to cover the bending of light. It is that this approach and 

Eq.(18), become the same, were 0  and 2

0

2

0 c/v  are small and equal to each other, which is the 

case for a weak gravitational field, driving a nearly circular motion regarding the bound 

object. 

 

Precession of the Perihelion of Planets 
One can quickly notice that, Eq.(18) accounts satisfactorily for the precession of the 

perihelion of Mercury. In this aim, for a change, we can merely compare the relative increases 

in the velocities, throughout the journey of say, Mercury along its trajectory, predicted by 

Newtonian approach, and the present theory. Thus, from Eq.(12) we have 
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,      (22)

    

versus the corresponding classical Newton formulation                                      

02

0

2

0

Newton0

0 d
v

c

v

dv
 ,         (23) 

devoid of the extra multipliers coming into play, through the present approach. 

As seen, the relative increase in the velocity, drawn by our approach [Eq.(22)], is a bit 

smaller then that drawn by the Newtonian approach [Eq.(23)]. Thus, it is as if, the Newtonian 

planet’s velocity in question, has slown down. Accordingly, the difference of the right hand 

sides of Eqs. (22) and (23) will, to a first approximation, provide us with the answer of how 

much the classical orbit, tilts toward the sun, around the perihelion. Thence, the precession 

P  of the perihelion of the planet, in question (cf. Figure 1), through each revolution can then 

be expressed as 
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an cotcotcot ,  (24) 

 

where, we approximated the exponential term with its first order Taylor expansion. 

One can further evaluate the term 2

0

2

0 c/v , via using our original set up, i.e. Eq.(5), 

together with the expression of the constant D , given by (see Ref. 1),  
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where a is the semi grand axis, of the planet’s orbit. 

Thus, we finally land at 

        













 0

0

0

P dan
a2

2
1 cot

)(
.      (26) 

One can notice that 0  is very close to )a( (and equal to this latter quantity, for a 

circular orbit), which makes that the integrand taking place in the above relationship becomes 

1+2/1=3; one can sense that this will hold even firmer, in the integral sense framed by 

Eq.(26). Thence, we can write
‡‡

  

 
orbit 2

0

2P
cb

aG
6dcotan3

M
 ,       (27)   

  (the rotation angle of the major axis of Mercury’s orbit,  

                          through each revolution, derived by the author)  

which happens to be exactly the same result as that furnished by the GTR (though the 

corresponding descriptions, and the resulting equations are entirely different from each other).  

 

Bending of Light 

Note that Eqs. (22) and (23) stay valid for the light bending too. For light, 2

0

2

0 c/v  is 

very close to unity throughout (since, although light gains energy while falling into the 

gravitational field, at the speed it cruises, its velocity is bearly affected).  One can then (via 

opening the orbit sketched in Figure 1 into a straight line, along the drawn tangent 

representing the light’s trajectory), immediately calculate difference extra , between the 

results furnished by our approach and that of Newton. Thus we have 
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cotcot ,   (28) 

  (extra bending caused by a weak gravitational field,  

   to be accounted for, next to the classical Newtonian bending)  

i.e. just as much as the Newtonian deflection, assuming that light grazes the celestial body of 

radius R, which makes that, the overall light bending comes to be twice as that predicted by 

the Newtonian set up; this result, holds for a weak gravitational field. Note that R, in Figure 1, 

is the minimum distance of the center of attraction to the tangent, representing the light’s 

original trajectory.  

Recall that, although the light velocity 0v  is very close to 0c , in our approach it is not 

equal to this limit. (Only a light photon hypothetically bearing an infinite amount of energy, 

can reach the speed c0.) This makes that the case of a strong field should be handled 

separately. Nonetheless, via the comparison of Eq.(12) and Eq.(13), we can quickly predict 

that a strong field (as insignificant as this may be), reduces the bending. 

 

6. CONCLUSION 

  

This work is based on the fundamental law of energy conservation considered along 

with the mass & energy equivalence drawn by the special theory of relativity (STR). Thus 

                                                 
‡‡

     Special thanks are due to Professor Elman Hasanov, from Isik University, who kindly achieved the 

integrals in question. 
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herein it is question of the “conservation of the overall relativistic energy” delineated by a 

closed system.  

The second ingredient we used, is the Newton’s gravitational attraction force, 

reigning between static masses exclusively. Yet we have shown that the spatial dependency of 

this force is imposed by the STR. The third ingredient we used, is quantum mechanics. The 

nature of this ingredient is nothing else, but energy conservation, together with de Broglie 

relationship, which in turn is fully compatible with the STR. Such a setup, based on our 

approach, eventually tells us, how a given object should be structured, already at rest, in order 

to ensure the end results of the STR, as well as those of the GTR [10,11,12,13]. This is what, 

in effect, Theorem 1 tells us.  

Thus, we have indeed operated based on just the law of energy conservation, though 

broadened to embody the mass & energy equivalence of the STR, and nothing else. This is 

deep in many ways. First of all we were successful to obtain all of the major end results of the 

general theory of relativity (GTR), i.e. red shift, precession of the perihelion of a planet, and 

light bending (up to second order of a corresponding Taylor expansion), through though, a 

completely different setup than that of the GTR. Note that we have reached, astonishingly, no 

singularity, and further have treated light just like an ordinary object. A photon falling in a 

gravitational field gains energy, though its velocity does not significantly increase. (It does 

increase anyway, and only a photon of infinite energy would bear the ceiling speed, we denote 

by c0.)   

How is it that we obtained virtually the same results as those of the GTR? According 

to our approach, matter is quantum mechanically built to yield such results. More specifically, 

the rest relativistic energy of an object embedded in a gravitational field (or in fact any field 

the object may interact with), is decreased, owing to the law of conservation of energy, as 

much as the binding energy coming into play. If so, then owing to the mass & energy 

equivalence of the STR, its rest mass is decreased. Thereby (via solely the quantum 

mechanical description of the object in hand), the gravitational red shift occurs (Theorems 1 

and 2). If the object is in motion in the field, its relativistic energy is further altered by the 

corresponding Lorentz factor, and one well gets to a general equation of motion, governing 

the destiny of the object, whether this is an ordinary object or a photon [Eqs. (5), (6), 12, and 

(13)].   

This is fascinating, but puts the principle of equivalence (PE) of the GTR at stake as 

well. What shall we do with it? Sincerely this is not our problem. Yet, clearly we have arrived   

at different expressions for gravitational mass and inertial mass (cf. Theorem 3). Because of 

this, we happen to attract conservative reactions, and we have to say something about the PE. 

The reader may refer to the Ref.1, where we have scrutinized this problem. But the basic issue 

is that, very many authors misinterpret this principle. So: i) We severely have a definition 

problem. ii) What the PE envisages, is a rest mass sitting in a gravitational field, in 

comparison with the same mass sitting (at rest) on the floor of an accelerating elevator, but 

not really a mass in motion in a gravitational field.  

Thus Newton’s, classical equation of motion is really not the grounds for comparison 

of the gravitational mass entering in the expression of Newton’s gravitational attraction force 

with the inertial mass entering in the expression of Newton’s law of motion (since the latter 

mass is evidently not resting in the gravitational field of concern, but it is in motion). 

Nonetheless, Newton was quite right to question whether his two masses are equal or not, and 

we have shown that they are not (cf. Theorem 3). Fortunately for the sake of the GTR, what 

we show by Theorem 3, is not really the breaking of the PE. But, we could arrive to the end 

result of the GTR concerning the effect of gravitation vis-à-vis an object at rest, via simply 

energy conservation. And this is of course tricky. In other words, when things are simplified, 
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what Einstein calculates via the PE, is the numerator of the RHS of Eq.(4), and we have 

practically the same result as his [cf. Eq.(4), and the footnote below Eq.(5)].  

Thus amazingly, we come to show that, what the principle of equivalence does, can well be 

accounted by the law of conservation of energy (broadened to embody the mass & energy 

equivalence of the STR), and quantum mechanics (which is in full compatibility with the STR). 

How can this be? Well, one answer is what we have done through this paper. Otherwise, the 

answer is surely profound, and constitutes the topic of a subsequent article, where we propose 

to demonstrate mathematically how the PE and energy conservation together with the mass 

and energy equivalence of the STR, could lead to alike results, and this happens to be not 

complicated at all. It is that the PE consists in, unfortunately, a non-conform analogy" 

between the effect of acceleration and the effect of gravitation. The remedial of the non-

conformity in question, astoundingly, leaves the PE unnecessary!  

What we did herein, in any case, is the removal of the blockade between different 

packages designed to conceive different scales of nature. Now both atoms and celestial bodies 

can be modeled along with the same approach, and gravitation can be quantized [22]. Along 

this line, we have to note that our approach, well leads to de Broglie relationship, for both 

electrically and gravitationally interacting objects.  

Note on the other hand that, recently V. Andreev reported to the PIRT Conference, 

held in July 2005 in Moscow, that a pendant load irradiated at the General Physics Institute of 

the Russian Academy of Sciences, by high energy electrons, comes to weigh less than its 

untouched twin counterpart [23]. The author of this article, following Andreev’s presentation, 

suggested that, the effect must be due to energizing the unpaired electrons of the atoms of the 

load in consideration (which happened to be duraliminium); these electrons, based on 

Theorem 3 and the succeeding Eq.(21), become practically weightless. A quick calculation 

indeed proves this point of view, which shall be elaborated in a subsequent article. 

Our approach further, unlike the GTR, is not restricted to gravitation. Thus a bound 

muon’s decay rate for instance, should retard, just like the hydrogen’s light is red shifted in a 

gravitational field [24].  

Nature being one, we should be able to conceive it, with just one model. We hope that, 

we were able to present herein a clue, toward such a goal.    
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